Rarities

The thread appeared in the “Two Plus Two Magazine” forum and was titled “How is being delt [sic] aces twice in a row not over 40,000-to-1?” The original poster’s question was in response to something Mason Malmuth had written in his “Publisher’s Note” to the April 2009 issue of the online magazine.
At the end of his note, Malmuth mentioned how he’d been playing limit hold’em at the Bellagio and a woman had been dealt pocket aces on two consecutive hands. “She couldn’t believe her good fortune and wanted to know what the odds of that happening were,” tells Malmuth. “Another player spoke up and told her that it was over 40,000-to-1. Of course this is wrong.”
The subsequent debate revealed that, in fact, “over 40,000-to-1” does correctly describe the odds of getting dealt A-A on two consecutive hands -- i.e., (1/221)(1/221) = 1/48,841. Of course, the odds of getting dealt pocket aces on the hand after the one in which you just got pocket aces is still just 220-to-1, as it always is for every hold’em hand. Indeed, Malmuth himself chimes in on the first page of the thread to say as much.
As I say, not that interesting of a thread, and it seems like the only real debate is over accuracy in one’s phrasing. As we all know, the odds of being dealt any two cards are entirely unrelated to whatever cards one was dealt before. As Malmuth, Ed Miller, and David Sklansky say in one of my favorite passages in Small Stakes Hold’em (2004), “each hand is an independent event. Cards are pieces of plastic. They have no knowledge, no memory, no cosmic plan. They are scrambled and shuffled thoroughly prior to every hand. Pieces of plastic cannot possibly conspire against you....”
Some may want to quibble with the precision of Horvath’s calculation. But really, who cares? Getting aces twice in a row is quite rare. Five times is extraordinarily rare. The odds of either are not really worth knowing, other than to satisfy our curiosity for mathematical trivia.
For some reason, thinking about this whole issue of getting dealt pocket aces twice put me in mind of baseball and its many statistics and records. As a kid, I was a fanatic, and like many young American boys memorized all of the important numbers associated with baseball records -- numbers like 4,191, 56, 755, .367, 61, and 511. Some of the records represented by those numbers have since been broken. Some haven’t yet.
They say all records are made to be broken, but there’s one baseball record that I think it is safe to say will probably never be broken. And it sort of resembles getting dealt pocket aces twice in a row.
That’s like a billion to one odds. I figured it out once.
Labels: *the rumble, Andy Bellin, Dicky Horvath, Johnny Vander Meer, Mason Malmuth